2018年11月27日星期二

Characteristics of a Semi-Insulating InP:Fe Wafer


 A semi-insulating InP:Fe wafer has been investigated by Hall effect measurements. A 2-inch semi-insulating InP:Fe wafer was divided into 63 squares of 5×5 mm2, and 17 samples were selected along the <011> and <01> directions to determine the characteristics of the whole wafer. The resistivity, Hall mobility, Hall coefficient, and carrier concentration at room temperature were in the range of 2.1–4.6×107 ohmcm, 1700–3000 cm2/Vsec, 5.5–14×1010 cm3/coul, and 4.5–11×107 cm3, respectively. From the measured Hall mobilities the impurity scattering mobilities were calculated and the neutral impurity concentration was estimated as to be 0.85–2.6×1016 cm-3. The resistivity distribution revealed that the 17 samples can be classified into 3 groups. 


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,

2018年11月12日星期一

Indium phosphide (InP) HEMT


Indium phosphide HEMT has broken all of the upper frequency records, on the way to terahertz devices. However, there are serious drawbacks to this technology, not the least of which is its high cost. For this reason, InP is more regarded as a lab curiosity rather than a production process.

The actual semiconductor that is doing the work in so-called InP is actually InGaAs. Indium phosphide is merely the substrate that it is grown onto. The reason for this is that InGaAs shares the same lattice constant with InP, 5.87 angstroms.

InP substrates are small (3" typical, 4" are available but remember bigger is not always better when something is brittle). ER=12.4, close to that of GaAs. A huge drawback of indium phosphide technology is that InP wafers are extremely brittle compared to other semiconductors. Try shipping an InP wafer sometime. Silicon is the least brittle (think Frisbee!), and GaAs is somewhere in the middle.



Source:Ieee

For more information, please visit our website: http://www.powerwaywafer.com,